NONSTATIONARY TURBULENT BOUNDARY LAYERS IN
INITIAL PIPE LENGTH

A. I. Leont'ev and A. V. Fafurin UDC 532.526.4

The results are given of an investigation on the effect of flow instability on friction and heat transfer
laws as well as the integral characteristics of the boundary layer.

The analysis is.based on approximations of tangential stresses and heat fluxes using the method de-
scribed in [1].

A method is proposed for calculating friction and heat transfer in axially symmetric conduits in the
case of nonstationary conditions.

A survey was given in [2] of the present state of research on nonstationary friction and heat transfer.
It was shown that solutions are either constructed by using the laws of friction and heat transfer obtained
under stationary conditions or criteria are introduced into these laws which take into account the fact that
the process is unsteady.

In principle, all solutions refer to laminar flows around surfaces of simple forms.

As a rule, turbulent flows are analyzed by employing the quasistationary approximation which in a
number of cases leads to contradictory results. It is our aim in this work to establish laws of friction and
heat transfer in the non-stationary case and to develop a computation method under these conditions for the
turbulent boundary layer in the initial length of pipe.

1. Laws of Turbulent Friction and Heat Transfer. By its very nature turbulent flow of fluid is not
stationary. The time-averaged parameters of turbulent flow are usually given by the formula

T
- 1r
w=—\ u(T - t)dt,
F | ur o
Q
where T is the time during which the averaging takes place. This period should be sufficiently long com-

pared with the time scale of turbulence and sufficiently short compared with the period of any small flow
alterations not directly related to turbulence.

If these flow conditions are satisfied it can be assumed that the nonstationarity of the averaged tur-
bulent flow has no direct effect on the structure of the turbulent boundary layer. The preconditions of semi-
empirical theories of turbulence remain valid for this quasistationary turbulent boundary layer. The
Prandtl formula for the turbulent tangential tension

dw,. \-
T, =00l a .
! ( dy ) @.1)
together with
LA S . “y ]/T—_ (1.2)
2 0gi
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All notations and subscripts are taken from [1].

The formula (1.3) can be integrated provided the distribution is known of the tangential tensions across
the boundary layer. An approximating polynomial proposed in [1] is used to determine them, namely

T=a-- bE - o8 - dE, (1.4)
whose coefficients can be found from the boundary conditions
— ar — ot (ot )
5:: oz —_— o . 0::0 ::1’ ~—T:: —_— . R
& I, 1==0, ES 0, & y T ot (\ 0 Jw (1.5)

By inserting (1.5) in (1.4) one finds

dv = o
=1 + QE é_ 1 (E)w’ TO =1 + 253—_332’ (1‘6)

where 7, is the distribution of tangential tensions along the thickness of an isothermic boundary layer on a
nonpermeable smooth plate.

o"“;[e\l

The value of the derivative at the wall can be found if one writes the equation of motion for the region
under consideration. One has

dpP |G
s = (rT) = 0. 1.7
dx ror (o @.n
In view of
dP dw, ow
—_— = ) , 1
dx Do EYRRRL L (1.8)
one obtains from (1.7)
(ot ) .., ® 8
L (1.9)
In the case of a stationary flow z = 0, ry— = past a planar plate there follows from (1.9)
[ ot ) ®
e =} "‘T b T .
previously obtained in [1].
The following were adopted in (1.9):
' dr, 5 dw,
2 = e Py = == —— Wy )
T, Ot T, o 0% (1.11)
2
by — (ow), 2
oWy Cs
By inserting (1.9) in (1.6) it is found that
T g . ® 6 ]
= =14 -—2= {z—;-h—{—b-—————. 1.12
% 21 T @-12)
By substituting (1.12) in (1.3) and integrating the latter with b; = 0 and by employing the Reynolds analogy,
*——
o= Ty (1.13)
hy— hy,
one obtains
Yper — [ 2(1 - "’1)1 _— ] (1.14)
- T T
Vs - (1 —9p) “’1) > l/ ____2f_a F
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Fig. 1. Computational results of the relative friction coeffi-
cient: curve 1) R™ =2-10; curve 2} 10; curve 3) 10; dp = 1.
The lines follow formula (1.14).

Fig. 2. The critical parameter njop vs R*,
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(1.15)
M2z x—-fs—,
To
The equation of motion for the region of the laminar sublayer can be written as
dw, Jw, Jdw, .
* '_:’{'w— .O B - 9, — i wwwx. 1.16
My dy {0 Y, Do ax>yT(p) ( )

By integrating (1.16) between the variability limits of the sought quantities (¢; and wy) the following expres-

sion is obtained for the relative velocity at the boundary of the laminary sublayer
' 5 2 t
O forg O Ow S0 0% B (00, Y wdt) (1.17)

A TR i

0] :R++ I f I
e st 9T W o 2w, 0% 2 P, .
0

One has the identity

®y . R,
R$-+6/6++ & (R$+5/6++)2'

(1.18)

It was shown in [3] that the number R proved a conservative quantity for accelerated and slowed
down flows. If one takes it as equal to its value under standard conditions one obtains from (1.17) together
with (1.18)

VR,
& = / 0 - 5 . (1.19)
RV v (1+z xé+_15mldg
0
The analysis of Egs. (1.14), (1.17), and (1.19) shows that for some values of the parameters which
determine friction there may occur a case in which the friction coefficient vanishes. From the physical

point of view this would indicate that the flow becomes separated from the wall. A similar case occurs
when the parameter ny = h¥ becomes equal to its limiting value.

1081



If in stationary flows the separation occurs for the critical values, Ay = A,y then in nonstationary
flows the separation may take place for any A, and the time-derivative of the velocity must be negative,
that is, in the case of a simultaneous effect of nonstationarity and pressure gradient the flow separation is
possible in narrowing conduits and its stabilization in widening ones.

The value .of the critical parameter nycp can be found from (1.13) if one assumes that ny — nyep, wq
~ Wiers &1 E10p> by ™ 0, cf —~ 0. One has

focr =

2
2 (1 —Q;CI) ] , (1 .20)
Vi e )/ 2 nig

. 5 2
B :2(1/ _g_+1) () TT % + V&

. (1.21)
_prt O o Eer
O cr = Ry §F g5 T g er
i/fQ—ﬁ&L»sz
- (RTO/677) . (1.22)
,blcr c .
_Qﬂ‘”ocr

In Fig. 1 computational results are shown of the relative friction coefficient vs factor; in the latter
the parameter n; under consideration is taken into account normalized by ngey for different values of the
Reynolds number R™. Its decrease is distinctly noticeable with the increase of the parameter n,. More-
over, one can observe a lamination as regards the number R™". In the region of positive acceleration
there is only a small increase in the relative friction coefficient, not exceeding 10%.

In Fig. 2 the critical parameter nyey is shown as a function of the number R**. The quantity nyep
increases with R*™ increas ing which is due to greater stability of the turbulent boundary layer.

The heat transfer law can be found from the hypothesis that the specific heat flux is proportional to
the gradients of velocity and of enthalpy [3],

g=pil Oy L, on* . (1.23)
dy %y
It was shown in {4] that for Pr ~ 1 one has
Tl 2 9
ot 73

A two-layer model of the heat boundary layers is adopted [5]. Then transforming (1.23) one obtains
a relation for the relative heat transfer coefficient in the form

! — )2
[Vao |
Yhtt = 8 : ’ — “ . (1.24)
—LV§t0§ g . 4% I
v i % &

Thus in this case as in the derivation of the friction law the distribution of heat fluxes across the
boundary layer must be known. A cubic parabola approximation, similar to (1.14), for the boundary con-
ditions

1, 7m0, 9 g 0, g1, 9L _(9) (1.25)
t=1 g=0 oo zoo g1 = (G,
results in the following relation:
i—_—_1+2E 1{ + b 6’1},
- 7
o 8- ¢ 0 (1.26)
2y = — 8, 1 dln b, “for 1—1p, >0,
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= b S gy 1, <0, 1.27)

q, being the heat-flux distribution by thickness of the quasithermal boundary layer on the impermeable
smooth plate.

The parameters on the boundary of the heat laminar sublayer can be found from the following consid-
erations.

The energy equation for the region directly adjoining the wall can be written as follows:

3 (hy—ho) | 0w, d(h,—h*) _ u ai (h, — %), (1.28)
y

Po 5 ' oy ~Pr

By integrating (1.28) with respect to the transversal coordinate y one obtains

[ 0 oy . a(hw"h;) - (0w b — k¥ (1.29)
Pr . a—_lj (hw h ) = g — Pw gt Y- (p&f')w( w )
The dimensionless enthalpy at the boundary of the laminar sublayer is found by integrating (1.29).
One has

8 5 ] 2
0, = Pr R+ -2 {St‘ L SO ] -
s PR e St g W
En
2 -
xé‘-”+(p“”)ws Gdg}. (1.30)
2 0o

0, _ Ui
S T (1.31)
+ Ly
(5], (]
one obtains
5 = Vo, — 1.32)
N K , 9 1 N
R+ i) ‘/ St(l%—zhﬁ—i—%—hs‘ﬁdg)
‘S-H-/ h 2 Eslh N
0

By solving the simultaneous equations (1.26), (1.27), and (1.24) and integrating the latter for by = 0
and employing (1.13) one finds

(1.33)

n = | 2 18, —~]n_2m}2,

W+ T — ) 0+1 1—0,  Q,
where Qp, is determined by (1.15) with Qn = F, &; = £y

Nonstationary heat transfer is characterized in principle by heating or cooling of the surface. The
anisotropy parameter ¥h tends therefore asymptotically with t — = to unity, that is, t— «, ¢h — 1; 8y
/8t — 0, having eliminated the indeterminacy it follows from (1.27) that z; — 0. Then 6; — 6y; Q= In
¢1h and g — 1. For zp = 0 and ¢, = 1 the previously obtained result in [6] follows from (1.33).

Let Rt* — «, Then by removing the indeterminacy in (1.33) it is found that the relative heat-transfer
coefficient in the limiting case under consideration is independent of the nonstationarity, that is, 5 = 1.
Equations (1.14), (1.17), (1.19) and (1.30), (1.32) and (1.33) are of such structure that their solution and
the numerical results are the same provided one starts with the same data (R** = R{"; z = zp).

Therefore, the computational results obtained by using (1.30), (1.32) and (1.33) can be shown in Fig.

In the case of heating up when gy approaches unity (1 — ¢~h) > 0 the derivative iz positive and the heat-
transfer coefficient exceeds its value in stationary conditions. Physically, this is explained by an additional
loss of energy proceeding from the heat carrier to the cool wall so that the enthalpy profile across the
boundary layer can be reconstructed. In the case of cooling yy, approaches zero. Insucha case the relative
coefficient of heat transfer is less than unity and the heat-transfer process is less intensive.

2. Profiles of Velocities and Enthalpy and Integral Characteristics. If Eq. (1.3) is integrated be-
tween variable limits with respect to w and ¢ then the velocity can be found in the turbulent core of the
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Fig. 3. Calculation results of the velocity profile: curve 1) z,
=—1.99; curve 2) 0; curve 3) 15; curve 4) zyopr = 42.5. Curves
— the calculations follow (2.1).

Fig. 4. Integral characteristics of the turbulent boundary layer
for R¥* = 10%: 1) 6+/6:; 2) 67t/6§%; 3) H/H,. Curves — the
calculations follow (2.5).

boundary layer as a function of the transversal coordinate by keeping the values of R*" and z fixed. By
inserting (1.12) into (1.13), integrating the result and finally solving the obtained result for the sought

quantity one obtains

_ 24— y/[2E—wa T e
0= =g l/ —5 (1 —pai ), 2.1)
¢ =-L1/ S F, 2.2)
' X 2
where Fj are determined by (1.15) if £y is replaced by the values of £j.
For 3y =1 there follows from (2.1) that
R
o =1——1 PoF, (2.3)
for ¢ =1; if z — 0 one has
— 1 I P:_C—f_;_ 3
o, ,41*[_;]/ 2 Ing,. 2.4)

In the case of critical profile the relation can be expressed by the formula (2.1), the quantity aj
being given in this case by

Uy /e v/ Zory| —2?) 15 35
Ghop = I/_f l/_ggfln)Q(l + /7 (v T2, —172E,)".

In Fig. 3 calculation results are shown of the velocity profile for RT™ = 10* and for different values
of zy. It is clear that if the flow is decelerated then the velocity profile is reduced but with acceleration
it makes up for it. From the point of view of the reaction of the boundary layer to an external force this
can be explained by the formation of another boundary layer and by the associated reconstruction.

By inserting (2.1) in the expressions for displacement thickness and for loss of momenta, namely
1
+ - 7
LIS (1-——9—m)(1-——£~)d§,
6 o p() r()
0 .
1
++ :
L:Y£Q(1~m)(1_i)d§, 2.5)
6 J P Iy
the sought relations can be obtained. In particular, one has for the displacement thickness

SV sV ey g s

AW 4
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The following were introduced in (2.6):

73 S 7 oW,
/“‘no'i‘l ¥, --n, I+V—z
c= Ty

73V,

l/——no—l/ IFZT/"L l—l/ T
0

In Fig. 4 the integral characteristics of the turbulent boundary layer are shown for R =10* as a
function of the nonstationarity parameter. One observes that they are essentially different from their

values obtained under stationary conditions.

The distribution of enthalpy across the boundary layer can be found from (1.24). Integrating (1.24)

between the limits of variation of the sought quantities one obtains

[ L—w
1— 9 dJ ‘l’h

I— "rh

where

a=V3h yo.

Qh =In

(V53— TEn,)(; 1228, - V' T— n,8;) \
“/3_'_] I_”’h. u 1”—22 1 l—nhg)

/ /‘/‘3 . 3
(] _é_nlL+']/l+nlz)( 2 (IWQE)_‘/I—"nhE)

|
|
U/ _g.n,L—Vth)( Doz l-n,l_ \
nh‘:zjl_zh“h%"
0

For the flow of an incompressible fluid, (2.7) implies

0=1—d.

3. Evolution of Turbulent Boundary Layer in Initial Length of Pipe in a Nonstationarity Case.

the case under consideration it is convenient to write the system of equations in the form

o e 87T Gy Q- H)- 87T O o _1_) 9&&0_05___’
Ox w, Ox Py Ox 2 pay ot
ST w87 o & 0w
Tax o w, 9y, 9x Mk ox
1 ANRES
=S Ny T
r/o- ( -/ £+
9 tpowo_"L“_Qiﬁ;o
ot v | 24 o/

2.7)

{2.8)

In

(3.1)

(3.2)

(3.3)

The integration of the system (3.1)-(3.3) depends on the initial conditions. In view of their diversity,
a particular case will be considered in which the flow rate of the incompressible fluid is nonstationary.

In this case the system (3.1)-(3.3) reduces to the differential equation
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Fig.ﬂa ‘Main flow parameters vs
time at the boundary of the initial
length. Curve 1) z, from (3.6); curve

by inserting in it the gradients of the displacement thickness
and of loss of the momenta obtained by differentiating suitable

2) Zyye from (3.6); curve 3) w/wmax relations.
from (3.12); curve 4) Wy from (3.4); It is convenient to write the parameter characterizing the
curve 5) ¥ from (3.13). Dots) rep- nonstationarity of the flow hydrodynamics in the form
resent data from {7]. L 9 s 1[D 1 aw, 1 .i 2_” 6.6
° ¢, ry 2 |lwy Wi o4 W, o ( Wy
The thickness of the boundary layer is related to the parameters in a given section by
5 STE N &
~h V (-fi) _ 3.7)
Yo 2f, 2f, faro
=Ly S [ L BBy B
% 2 12 2\ n, J c
¥
-———]/3(‘1I TRy — —— v },

fg=—:: l/f”fo{ l// n (“‘f—'—“%)ln [/F%—{

SRR SR PN &L EXNMYA
S(ng g 4 1____22
Ly
+_1(l{;_3'_+i) 31/3(‘l’4-n0)~1/‘lf_ (3.8)
4 \ ng n, 4

]

The relation between the velocity and the number R*+ is found from Eq. (3.3) which in our case it is
convenient to write as

4HR* = R, (Wy—1). (3.9)

The law of friction under standard conditions is obtained from (1.13) and one has

B ) (3.10)
o=, ) | :
71n§1o

\

Thus the system of equations (3.1)-(3.10) is completely determined by the evolution of the turbulent
boundary layer in isothermic conditions and by the appearance of nonstationarity. In the case of fluxin
the initial length of pipe its solution can be obtained by employing the following scheme.

1. From the given initial conditions w /D = f(t) one can determine the value of velocity and of its
derivative at the entry to the pipeline which corresponds to a given time instant and one evaluates the
thickness of the boundary layer, the displacements and momenta.

2. Using the formula

.
. W, w,—1 —-( )
dWae T( ) at \ wy

a = Djwy, (.11)
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one calculates the time-derivative of the velocity and the formula (3.6} yields the parameter n; in a section
which corresponds to the integration step of Eq. (3.4).

3. Knowing the parameter n, one finds now £, wj and ¥ by solving the system of equations (1.14),
{1.18), and. (1.19).

4. The thickness of displacements and the losses of momenta, of the boundary layer and the number
R*" are now calculated.

The obtained values are used as the initial conditions in the next step.

Figures 5 and 6 show the results ofthe calculations using the above described method. The initial
conditions from the experiments in [7] (Fig. 8b) were adopted as the starting data for the case of a slowed
down flow. The average veloeities in Fig. 6 shown by points were approximated by guadratic parabola {o
give time-dependent average velocity referred fo its maximal value. The roughness of the pipeline was
not taken into account. The time-variation of the basic flux parameters at the boundary of the initial length
is shown in Fig. 5. The following special features are observed,

For small values of negative acceleration at the entry the flow on the conduit axis can be accelerated.
This can be explained by the fact that complete acceleration in the potential core of the flow is a sum of the
acceleration at the input and of the acceleration due to the growth of the displacement thickness. If the
second contribution is considerable then negative values of the parameters z, and zyye may be observed.

The modulus of acceleration increases with time, its contribution becomes greater and at some in~
stant the parameters z; and zayve assume positive values.

From this time instant the total flow decelerates. The way in which the nonstationarity parameter
changes implies a specific law for variation of the relative friction coefficient ¥. For accelerated flows it
exceeds unity, for decelerated ones it is less than one. The average relative friction coefficient over a
period is 0.7 which is in agreement with the experimental data of the authors of [7] (Fig. 7). As mentioned
previously, a negative velocity gradient has a considerable effect on the integral characteristics of a tur-
bulent boundary layer, in particular giving rise to the growth of the displacement thickness. This is in-
directly confirmed by considerable velocity change of the initial length at the boundary as well as by cal-
culations of velocity on the pipe axis along its length as shown in Fig. 6. The flow in the potential core
was accelerated up to 0.5 sec since the acceleration due to the growth of displacement thickness prevailed
over the initial deceleration. The curves 1 and 2 are very close to one another.

For large decelerations the displacement thickness changes considerably and the growth of relative
velocity on the axis is appreciable,
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Wy 2 From Fig. 6 one can draw yet another important conclusion.
P The negative velocity gradient has a substantial effect on the growth
’ / / of thickness of the boundary layer which manifests itself by the de-
116 /}i 4;,9/ pendence of the length of the initial portion on time.

/‘ /,g/ o —a In view of the lack of experimental data on kinematic flow
108 o « —b characteristics in the initial length of the pipe under given condi-

/ x —¢ tions an experimental investigation had to be carried out. Its

) x first part includes the measurement of the total pressure in the
—o G % REZ premix chamber and of static pressure in the pipe length. It is

our aim at this stage to determine the velocity in the flux potential

Fig. 7. W, vs X/R{-%, a) 8@
N o v8 X/R; ) 8/ wyy) core in the presence of nonstationarity.

/8t = 0; b) 0.0028; c) 0.115,

Curves obtained by employing The experimental set up consists of a closed-type flowing
(3.4); the points represent exper- water hydrodynamic system. The following are its main elements:
imental results. a water-supply system, pulsator with a premix chamber, experi-

mental portion, automatic registration system of the parameters.

The supply system contains a pump TsV4/85, a buffer and a damper capacity.

To ensure a specified velocity law and its profile at the entry to the experimental portion a pulsator
and a premix chamber are used.

The experimental portion is a seamless pipe made from stainless steel its internal diameter being
20 mm and its length 2200 mm. At the sections x/2r, = 0.5; 8; 12; 20 holes of $2.2 mm were drilled and
pipe connections welded on for static-pressure measurement.

An automatic registration system for the parameters ensures that the sought quantities are registered
in less than 1/10th of the measurement period. The system consists of DDV pressure transducers, KN-2M

converters and of an N-700 oscillograph.

The inertia characteristics of the system fluid-transducers were estimated in accordance with [8].

Prior to starting the main experiments the sizing and calibration of the equipment was carried ouf.
The sizing consisted in determining the reasons for hydrodynamic instability and flow pulsation. It was
found that the presence of bends and turnings in the installations was the main source of pulsations. The
hydraulic route was, therefore, completed using the smallest possible number of turnings. A partial sup-
pressing of pulsations is achieved by damping capacity.

Calibration includes the checking of readings of all pressure measurements and of the secondary ap-
paratus.

The main experiments refer to flows with decelerated as well as accelerated state of flux at the entry
to the experimental portion. The experiments embrace the range of velocity from 0 to 6 m/sec and of ac-
celeration from 0 to 50 m/sec. The Reynolds numbers corresponding to the velocities at the entry vary
from 5.5-10 to 11,5-10%,

The complete and static pressure measured during the experiment is used to find the velocity. It
can be determined by solving the Lagrange—Cauchy equation,

Ow, Ow, 0 +
W, — = — —— (P* —P), 3.12
Po 5 + 04, ax ax { ) ( )

In Fig. 7 these calculations are represented as functions

X
%o =f(§—?:§s—t), (3.13)

Wy

One observes the effect of the negative initial acceleration on the velocity change in the potential core. The
effect of positive acceleration is negligible and was not noticeable in the experiments.
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